Toric Hyperkähler Varieties

نویسندگان

  • Tamás Hausel
  • Bernd Sturmfels
چکیده

Extending work of Bielawski-Dancer [3] and Konno [12], we develop a theory of toric hyperkähler varieties, which involves toric geometry, matroid theory and convex polyhedra. The framework is a detailed study of semi-projective toric varieties, meaning GIT quotients of affine spaces by torus actions, and specifically, of Lawrence toric varieties, meaning GIT quotients of even-dimensional affine spaces by symplectic torus actions. A toric hyperkähler variety is a complete intersection in a Lawrence toric variety. Both varieties are noncompact, and they share the same cohomology ring, namely, the Stanley-Reisner ring of a matroid modulo a linear system of parameters. Familiar applications of toric geometry to combinatorics, including the Hard Lefschetz Theorem and the volume polynomials of Khovanskii-Pukhlikov [10], are extended to the hyperkähler setting. When the matroid is graphic, our construction gives the toric quiver varieties, in the sense of Nakajima [15].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection Forms of Toric Hyperkähler Varieties

This note proves combinatorially that the intersection pairing on the middle-dimensional compactly supported cohomology of a toric hyperkähler variety is always definite, providing a large number of non-trivial L2 harmonic forms for toric hyperkähler metrics on these varieties. This is motivated by a result of Hitchin about the definiteness of the pairing of L2 harmonic forms on complete hyperk...

متن کامل

Minicourse on Toric Varieties

1. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Characters and 1-Parameter Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3. Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Universal Rational Parametrizations and Toric Varieties

This note proves the existence of universal rational parametrizations. The description involves homogeneous coordinates on a toric variety coming from a lattice polytope. We first describe how smooth toric varieties lead to universal rational parametrizations of certain projective varieties. We give numerous examples and then discuss what happens in the singular case. We also describe rational ...

متن کامل

Toric ideals, real toric varieties, and the moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties and the moment map. In particular, we explain the relation between linear precision and the moment map.

متن کامل

Toric ideals, real toric varieties, and the algebraic moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties. In particular, we explain the relation between linear precision and a particular linear projection we call the algebraic moment map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002